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MANY-ELECTRON THEORY OF ATOMS AND MOLECULES

BY OKTAY SINANOGLU

STERLING CHEMISTRY LABORATORY, YALE UNIVERSITY

(ommtunicated by B. A11. F'uoss and read before the Academty, April 24, 1961

Orbital theories of atoms and molecules work quite well in a qualitative or semi-
empirical way but fail when put to a quantitative test. The error, which is so
large that often even molecule formation is not predicted, is generally attributed
to electron correlation. Its importance has been stressed in several reviews.1 2

Since electrons affect one another through their instantaneous potentials and
not just by their average potentials as in the Hartree-Fock method, I we do have a
many-electron problem. But what sort of a many-body problem? Does the long
range of coulomb repulsions cause all electrons to be involved in one complicated
motion? If this were the case to the extent of overcoming the effects of the ex-
clusion principle, shell structure would be wiped out, and an atom or molecule
would be more like a drop of electron liquid. Actual shell structure and electron.
densities are close to those given by the Hartree-Fock method. For example,
densities from the latter agree quite well with X-ray results.3
The situation of the many-electron problem in atoms and molecules is compared

with related many-body problems in Figure 1. Inside nuclei, strong, short-range
forces cause only local nucleon pair correlations to dominate. Brueckner theory4
considers these for the idealized infinite nuclear "matter." Due to the strength of
repulsions, each particle moves in an environment it is constantly polarizing. In
finite systems,5 difficulties arise. This "polarized sea" potential is strongly de-
pendent on particle state, so that orthogonal ground-state orbitals cannot be ob-
tained easily. The basis is discrete, and the difficulties of evaluating slowly con-
vergent infinite sums as in ordinary perturbation theory' appear.

In the infinite electron gas, Hartree-Fock orbitals being plane waves, there is no
electron localization. As we shall see below, correlation is determined by the
difference of the instantaneous coulomb potential g0j = rij-1 between two electrons
i, j and the average, i.e., Hartree-Fock (H.F.), potential they would exert on one
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FIG. 1.-The situation of the many-electron problem in atoms and molecules and related many-

body problems.
another. But due to complete delocalization, this H.F. part, S,(j) + S3(i) is uni-
form and nearly zero for a very large box, and the fluctuation potential is the full
gi, with its long range. Thus many electrons correlate at the same time.

Fortunately, in atoms and molecules (except dyes, etc., where metallic behavior is
approached), the problem is very different from that of the electron gas. The
symmetry, the nuclear wells, and the exclusion principle localize electrons with
paired spins in the Hartree-Fock wave function. As shown by Linnett and P6e,6
the configuration of maximum probability given by a determinental function, e.g.,
for Ne, is four electron pairs tetrahedrally arranged. Such spatial arrangements,
bonds, etc., are better represented by transforming the H.F. orbitals to "equivalent
orbitals"-which leave the determinant unchanged.7
The only accurate calculations on atoms and molecules so far8 are still those on

two-electron systems based on the classical works' of Hylleraas on He, and James
and Coolidge on H2 using trial functions containing r12. This method not having
been extended to the case of N electrons, for such systems configuration-interaction
(C.I.) is used. The latter is often slowly convergent (except when used for de-
generacy or "resonance"), the number of multiple excitations increases very rapidly
with N, and best C.I. on small molecules so far has given only about 1/3 to 1/2 of
the binding energies.
We have developed an extensive theory for the N-electron atom or molecule (a)

to get a quantitative scheme of the order of the difficulty of the He, H2 case, (b)
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to understand the physical behavior of many-electron motion and to relate the
"chemical" picture to correlation. In our initial work, rigorous solutions were ob-
tained in perturbation theory.9 We have now gone far beyond those results and
completed the picture in several directions. In this communication, we summa-
rize our latest findings with emphasis on the physical basis and the over-all structure
that emerges. The full mathematical theory will be published in the Journal of
Chemical Physics.

Physical Aspects of Correlation in Atoms and Molecules.-The principal features
of the many-electron problem in atoms and molecules are shown in Figure 2. The

Hartree-Fock e pair
|"sea"99 (oo) |localization

shells

potential Exclusion effects;
Short-range Igj - S(j) - sj(i)W"Fermi" correlations

pair correlation /dc
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change; Be, LiH Be, LiH, B. CH4,.
FIG. 2.-Main physical aspects of electron correlation in atoms and in molecules with no strong

delocalization.

lollg-range effects of coulomb repulsions are well taken care of by the Hartree-
Fock potential and orbitals. We start with the Hartree-Fock solution, oo. The
reason for the choice of this "sea" in which electrons move will become more and
more apparent as we go along. The effects of using a polarized "sea" as in the
Brueckner method would come up only to quite high orders and would be negligible
aside from the cumbersome self-consistency procedures4' 5 that it would require.

If we write #, ='o+ x (1)

for the exact wave function with ;6o the single H.F. determinant and x the correction
for correlation, the energy is separated into an H.F. and a correlation part.

E = <x,H4t> EH.F. + 2<+oX (H - EH.F.)X> + <x,(H - EH.F.)X>, (2)
<X,X> I +2E<HoX=> +<x,<x>

EH .F. = < oo7 H+o>,
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N
and H= E h2O+ i gj = Ho + H1, (3)

i=1 i>j

with h°0 the bare nuclei hamiltonian of electron i and gij = 1/rij. We separate H
into a

N

Ho= Z (h20+ V1) (4)
t=

part for independent electrons in the H.F. potential V, and a residual "fluctuation"
potential part

N

Hi = E [gi - S2(j) - S(i) , (5)
i>j

N N

writing9 EVZ as E [Si(j) + S3(i)]. An Si(j) is the coulomb plus exchange po-
i=1 i>j

tential of orbital i acting on electron j. Then
N N

EH.F. = Eo+ El= E c--E (Jij-Kfj) (6)
i= 1 i>j

with e; the H.F. orbital energies, Jij, Kij the coulomb and exchange integrals.
(H - EH.F.) becomes

N
(H - EH.F.) = ei + E mij, (7a)

i=1 i>j

where ei; hj + Vi-i

and mij = gtj -SS(j) - Sj(i) + Jj - Kij. (7b)

A Hartree-Fock spinorbital occupied by electron i before antisymmetrization is
denoted by i also. so that

eii = 0 from Ho0o = E00o.

Equation (2) becomes

2< Oo, Z mijx > + <x,(Z ei + E mij)x
E-EH.F.=ijj~ (8)1 + 2 < o, x > + <x, x>

Fluctuation Potential.-Correlation behavior is determined (a) by the pairwise
fluctuation potentials mij, and (b) by the electron distribution in the "sea," o0,
which depends strongly on its antisymmetric character.6' 7

An mij is usually of short range in directions going from orbital to orbital. Take
a (is) electron and another in the Be atom for example. An electron placed at r2
sees the average coulomb potential Sl(r2) of the (is) electron with opposite spin as
shown in Figure 3 (taking a Slater (is) orbital with exponent 3.70 as sufficiently
close to H.F.). The (is) electron is most likely to be found at rl = 0.27 a.u.
(Bohr orbit in Be+2). If it were there instantaneously, electron two would see
the g12 = r12-1, also shown in Figure 3.
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FIG. 3.-Fluctuation potential (g,2-SI(2)) as seen by an electron at r2 due a (is) electron with
opposite spin instantaneously at its Bohr radius and in line with r2. Note that this potential
which determines the correlation, is of short range through 9g2 = r121 and the Hartree-Fock
potential, S1(2), are long range.

The difference, g12 - S1(2), differing from M12 by the constant value 0.39 a.u., is
the fluctuation potential, which shows where electron two (r2) would want to be
if electron one were at ri8max. = 0.27 a.u. Both 912 and S1(2) are of long range,
but ml(2) has a short range. It has died off before reaching a distance of 2.1 a.u.,
about the Bohr radius of (2s) in Be. The singularity of 912 at r12 = 0 is the main
feature left in M12. Note also the minimum in ml(2) on the other side of the nucleus.
Similar curves and surfaces can be drawn by varying ri and 012 (angle between iz
and r2) also. These would aid the selection of trial functions to give maximum
charge density at the dips and zero at singularity.
The exclusion principle, by putting the third and fourth electrons in a different

shell, keeps them at a safe distance from the fluctuation potentials of the (is)2
electrons. As the discussion of other cases below will show, this phenomenon is
quite general and even in more subtle cases leads to local pair correlations as the
main effects, making the "collisions" of three, four, . electrons usually negligible.

This fact manifests itself in the equation:
N /

x~rXs = E a
1,2,3.. N Ult (9)

where 1, 2, . . . N are the spin-orbitals in +o occupied by electrons with the same
numerals before the antisymmetrizer 1 makes them indistinguishable. The flj is
the antisymmetric correlation wave function of i and j which shows how they are
thrown out of each other's way by mij. In the orbital representation, uij contains
all double excitations of orbitals i, j from the "sea," 0o. The two electrons cannot
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go into regions already occupied by other electrons, and this effect of the exclusion
principle is reflected in the orthogonality9 of Fze to the orbitals of qo, i.e.

<'(Xx 1), k(xt)>i = 0 (k = 1,2, ... N) (10)

where integration is performed over xi only. The itij does not contain any single
excitations either9 (k = i or j), because any further adjustment of the orbitals in the
"sea" (Brueckner method) is negligible. The major adjustment has been done
already in the Hartree-Fock method.
Equations (9) and (10) come out exactly9 in first-order perturbation xi beyond

H.F., i.e., if only part of the energy, equation (8), is minimized.'0 Then iij would
be the solution, uiJ(), of the first-order part of the Schridinger equation" of two
electrons in the H.F. "sea":

(ei + ej)u&ti) + ?ij(63(ij) = 0. (11)

6 antisymmetrizes i and j. The (^MnBij) is miB(ij) made orthogonal to all k as in
equation (10); thus A jj is even more localized than mjj.
We shall now leave equations (9) and (10) quite general and not confine us, to any

order of approximation. Various ways of obtaining the pair correlations exactly
will be discussed later.

Unlinked Clusters versus Many-Electron Correlations.-The complete x would
contain in addition to equation (9), "clusters" of three, four, etc., electrons at a
time (U123, U1234, etc.). In addition to these terms, just the substitution of x.,
equation (9), into the energy, equation (8), introduces three-electron correlations.
The analysis is carried out easily with diagrams giving the energy of XR as

E E- EH.F. jD(to 4+ ok) (12)

j= 2 < 63(ij), mij Cij > + < Uij, (ei + ej + mij)Uij> (13)

D = 1 + <X8, X,> = 1 + E <UiUij> (14)
i>j

The triangle is the three-electron correlation involving the product of Uij,tf, and
Mki. Because of the physical effects described, okj and uji will not both be large in
the same region of space, so that only pair energies in equation (12) are significant.

In the recent configuration-interaction study'2 of the Be atom starting with H.F.,
single and triple excitations were found entirely negligible. But important quad-
ruple excitations appeared-at first sight a surprising result, since the probability
of a four-electron "collision" ought to be smaller than that of a three-body one.
Equation (9) represents only two electrons correlating at one time. Actually,

it is very likely that when two electrons "collide," somewhere else in the system
other binary "collisions" will be taking place independently but simultaneously.
To account for these, all possible products of independent pair functions must be
added to x.; e.g., for Be:

X88 = 2 (i12a34 + 1,3 24 + s14 23). (15)
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As in the theory of imperfect gases, these are "unlinked clusters" and have played
an important role in other many-body problems.4 13

If in Be, true four-electron correlations, U1234, are negligible; the coefficients
of quadruple excitations should be given only by those of double excitations. In
Table 1, such coefficients from equation (15) are compared with those from the

TABLE 1
UNLINKED CLUSTERS VERSUS FOUR-ELECTRON CORRELATIONS IN BE ATOM

Coefficient from C-dc'd. [El. (15)]
Four-excited 37-configtirati n Unlinkei ci ster
configuration wave function* c3efficient

P1,('S)pu1'(1S) 0.00706 0.0373
Pi2( S)S12(1lS) o0.03 35 0. 0 3 17
P12(lS)dl 2('S) 0.00159 0.00168
P,12( 'S)d12( 1S) 0.000464 0.000478
Energy contribution -0. 075 ev - 0.074 ev
* From Watson.12

37 configuration'2 C.I. The agreement is indeed satisfactory. We have obtained
similar results upon examining recent C.1. results'4 on LiH.

Effect on Energy.-The energy effect of unlinked clusters such as in Equation
(15), is again analyzed with diagrams. One gets from equation (8).

E-NEH.F.< E RiD (16a)i~ DI D'
D -D and R contains all triangles, squares, and other joint four- or more-electron
correlation effects.

Dij =- 1 + E < A 1, ak1 > + (16b)
k,lHi,j

As N tends to infinity, Dij/D approaches 1.4, 13 In atoms and molecules if D is
sufficiently different from unity due to some "resonance" as in Be (large 282 -
2p2 mixing which makes Be a metal not an inert gas), unlinked clusters affect the
energy by canceling part of D'. This energy change agrees perfectly with the 37
C.I. result in Table 1, showing also that R in equation (16a) is negligible as an-
ticipated. Thus,

E - EH.F. iZE3ijD,/D. (17)
i>j

One reason for the smallness of many-particle effects is the smallness of uij.
Even with the 282 - 2p2 "resonance" in Be, D gets only as large as 1.09. Usually
D _ Dij _ 1. Equation (17) will usually be a good approximation, but if need be,
the neglected terms, R, can also be estimated with zfi and an upper limit obtained
to E.

Exlusion effect in boron.-We have seen how and why three-, four-, and more-
electron correlations become unimportant when electrons are localized in radially
different regions of space as in Be and LiH. What about cases, however, which
involve say 2s, 2p electrons which are radially all in the same vicinity?
To see how three-electron correlations are expected to behave in such cases, we

examine the boron atom. Almost all of the (2s)2 correlation, i234, in Be is due to
(2p)2 mixing.'2 There, U34 is IS, a combination of three (2p)2 determinants. When
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a (2pza), i.e., spinorbital 5, is put on top of the (28)2 shell as in boron however, U34
becomes orthogonal to it, i.e. < 434, 5> = 0. Instead of the whole sphere, U34 Will
now be large only on the xy-plane as shown in Figure 4. To make the three-
electron (2sa2s,82pa = 345) correlation, i.e., the triangle of equation (12), appre-
ciable, the product US3445 must be large. But '45 is large where its fluctuation po-
tential M45 and B(45) are large [see equation (11)1. The fluctuation potential,
(945- S5(4)), that electron 4 sees when 5 is at its most likely place (Fig. 4) is shown

x~ ~ I

FIG. 4.-Exclusion effect in Boron (ls22822p.). The two (2s) electrons while correlat-
ing are kept away from the (2p.) electron which has the same spin as one or the other
(2s). Thus (2s)2 correlation. 234, is confined to the vicinity of the xy-plane.

in Figure 5 for a fixed radius.
Note that M45, hence U46, is very small just where (--90°) U34 is large. Thus, the

product U34U45 will be small everywhere, again exhibiting the combined behavior of
mij and exclusion to make many-electron correlations unimportant.
How to Get the Pair Functions.-Having a sum of pair energies in equation (17),

each pair function can be obtained separately in several ways, depending on the
magnitude of (DfjD). These ways and the over-all picture that comes out of our
theory is shown in Figure 6.
Each iij, equation (13), varied subject to orbital orthogonality, equation (10),

yields Schrodinger equations of electron pairs in a Hartree-Fock "sea."

(ei + ej + Aij) j = 0 (18a)

where fij = B(ij) + uij. When this equation is satisfied, eii becomes

6= <G3(ij),gB iU> (18b)

Minimization of smaller parts'0 of riijDi/D leads to first-order pairs,9 equation
(11). On the other hand, a more complete Schr6dinger equation than equation
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FIG. 5.-Reason for expecting (2s)2(2p,) three e- correlation to be small.

The fluctuation potential, [g4,.-S5(4)], seen by the (2s) electron, 4, due to
electron 5 at the maximum of (2pz) is ca. zero on the xy-plane (7r/2) where
1234 was largest (Fig. 4).

Schrdinger equations for
pairs in Hartree-Fock "sean
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FIG. 6.-Principle features and wlay-s of using the many-electron theory of atoms and molecules
as reported in text.

(18a) is obtained by minimizing eiij(l U< Ufi> instead of Efj alone. Equa-
tion (18a) differs from the closed form of the Bethe-Goldstone'5-Brueekner equa-
tion in containing m-,j instead of goj. The results we have obtained ill this connec-
tion should also be useful for finite nuclei.
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Now the variational minimum principle can be applied to each ij, equation (13),
separately subject to equation (10) and with trial functions that may contain r,2
explicitly as in He and H2 for shells with a strong "correlation hole."' For others,
e.g., those with "resonance" as in the (2s)2 of Be, a small secular equation need be
solved mixing a few configurations. The number of independent pair functions
that are needed9 is much smaller than N(N - 1)/2 due to the multiplicity of many
pair states such as 3S, 'D, etc. Only 9 pair functions of which 6 are singlets must
be obtained for Ne, instead of 45. Because of orbital orthogonality, equation (10),
the minimization procedure can be applied even to outer shell pairs with no fear of
converging to the wrong shell ("the nightmare of inner shells" which plagued the
quantum chemistry of the thirties) .16

The "Chemical" Picture.-Equation (18) for an outer pair with Vi + Vj - Si-
So = Vcore (Eq. 7b) has the form of a "11-electron Hamiltonian" thus providing a
basis for such semiempirical schemes.'7 Moreover, iij can be added to (Jiff-Kij),
equation (6), explaining the successes of semiempirical M.O. calculations.

In molecules with no strong electron delocalization, the Hartree-Fock orbitals in
40 can be transformed7 into "equivalent orbitals." ThenE ij becomes simply the

i<i
sum of "bond" correlation energies and "Van der Waals" attractions between non-
bonded regions. The latter were discussed semi-empirically by Pitzer.2 One
can use the theory both ways and (a) calculate such Van der Waals forces having
C.I. etc. type correlation results starting with Hartree-Fock, or (b) estimate corre-
lation energies of pairs of H.F. orbitals from estimates of bond energies and London
dispersion type forces.2
Thus the "chemical" picture with its bonds, Lewis-Langmuir octets6 and orbitals

remains in spite of correlation.
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